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Abstract. Weak convergence of probability measures on function spaces has been an active area 
of research in recent years. While the theory has a somewhat abstract base, it is extremely useful 
in a wide variety of problems and we believe has much to offer to applied probability. Our aim 
in this survey paper is to discuss those aspects of the theory which are relevant to work in applied 
probability. After an introduction to the foundations of weak convergence, we shall discuss par- 
tial sum, point, Markov and extremal processes. These proces>ses form the building blocks for 
many of the important models of applied probability. 

functional central limit theorems renewal processes 

1. Introduction and summary 

The idea of weak convergence of probability measures on function 
spaces has been present in the literature for at least twenty years. 
ever, in the last decade the number of papers in this area has incre 
dramatically. A major stimulus for this work has been the excellent book 
on the subject by Billingsley [ 5 1. For an up-dated version of parts of 
see [.6]. Our aim in t is paper is to discuss those aspe:cts of weak con 
gence which are rele nt for applied probability. The paper is organiz 
primarily by the type of stochastic process involved. We shall discuss 
partial sum, point, Markov and extremal processes. These processes fez-m 
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the building blocks for many of the important models of applied proba- 
bility. As with any paper of this sort, the selection of topics is greatly 
influenced by the author’s interests. Some effort has been made to in- 
clude those topics of greatest interest and use to people working in ap- 
plied probability. 

Classical probability theory deals in large part with limit theorems 
for partial sums of independent, identically distributed (i.i.d.) random 
variables (r.v.‘s). In particular, the central limit theorem (c.1.t.) in the 
case where the sumrnands have mean zero and finite variance states that 
the distribution functions (d.f.‘s) or probability measures (p.m.‘s) of the 
partial sums, properly normalized, converge weakly to the d.f. or p.m. 
of the standard normal r.v. The p.m.‘s in this case are defined on the 
Bore! sets of the real line. Once this result is established, one would like 
to be able to use the d.f. of the limit r.v. as an approximation for the 
d.f. of the partial sums for ‘“large” values of the parameter yt, say. 

Weak convergence theory for p.m.‘s on the Bore1 sets of a function 
space is directed at obtaining comparable results for sequences of sto- 
chastic processes or random functions (r.f.‘s) whose sample paths lie in 
the function space. In other words, we would like to shcw that a se- 
quence of stochastic processes converges to a limit process in an appro- 
priate sense. Again the limit process, which is genera ly easy to compute 
with, is suggested as an approximation for the processes in the sequence, 
which are usually untractable for computations. One of the chief advan- 
tages of dealing with the entire process, rather than its value at a fixed 
time point, is that weak convergence results can often be obtained im- 
mediately for functionals of the process which are of greater interest 
than the original process. The standard method for showing weak con. 
vergence of an appropriately normed sequence of processes is to first 
show convergence of the finite-dimensional distributions (f.d.d.‘s) and 
then to demonstrate a certain compactness property that prevents prob- 
ability from “escaping to infinity”. In show!ng convergence of the 
f.d.d.‘s one must resort to classical methods such as those of characteristic 
ftiiiciions, differential equations, or moments. To show the compact- 
ness property one must convert conditions for compactness of sets in 
the function space to easily verified probabilistic conditions. It is the 
latter task which creates the greatest technical difficulties for the theory. 
The notation and terminology used in this paper follows, for the most 
part, that of [ 5 1. 

The organization of the paper is as follows. Section 2 contains a dis- 
cussion of the foundations of weak convergence theory and is taken pri- 
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marily from [ 51. In Section 3 we treat convergence of processes formed 
from partial sums of r.v.‘s or r.f.‘s. Sections 4, 5 #and 6 are devoted to 
weak convergence of r.f.‘s formed from point processes, Markov proces- 
ses and extremal processes, respectively. In Section 7 we discuss func- 
tionals of Brownian motion and the Poisson processes. Finally, in Sec- 
tion 8 a few concluding remarks are made dealing with future work in 
this area. 

2. Foundations 

Our discussion in this section follows [ 51 very closely and is meant to 
summarize those basic results which have proved most useful in applied 
probability. Weak convergence is concerned with p.m.‘s on the Bore1 sets 
J of a metric space (S,. m). A sequence of p.m.‘s {i’, : n 2 1) is said to 
converge weakZy to a p.m. P if 

lim s fdP, = s fdP (2.1) 
n---s s 

for all bounded, continuous, real-valued functionsf on S. We write 
P, * P for this type of convergence. Equivalent conditions for weak con- 
vergence may be found in [ 5, Theorem 2.11. Observe that weak conver- 
gence only involves S and its Bore1 sets J , so that two different metrics 
inducing equivalent topologies lead to the same weak convergence. 

A random element (r.e.) X is a measurable mapping from some prob- 
ability space (G,Y,P’: into S. The distribution of X is the p.m. P = PX-1 
on (S, 4). We shall say that a sequence of random elements {.XR] CQIZ- 
verges weakly to a r.e. X, and write Xn * X, if the distribution Pn 
of Xn converges weakly to the distribution P of X. We note that the 
r.e.‘s Xn and X need not be defined on the same probability space 
(s1, 9, P), but must only induce p.m.‘s Pn and P on the same metric 
space (S, m). 

Now assume S is separable. A sequence of r.e.‘s {X,> coizverges ilz 
probability to X if X, and X are defined on a common probability space 
and for all e > 0, 

P[m(& X)2 e] + 0. 

When X is a constant element (nonrandom), convergence in 
is equivalent to weak con ence. In such cases 1Jve shall wr 
m(Xn, X) * 0 or X, * X. and Yn ve a co 
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also write m(Xn, Yn) * 0 when for all e > 0, 

P[m(X,, Y,> > e] + 0. 

The notion of tightness, introduced by Prohorov [ 45 1, plays a key 
role in the weak convergence of p.m.‘s. A family of p.m.‘s II on the 
space (S, 3) is said to be tight if for every E > 0 there exists a compact 
set KE such that P(K,) > 1 - E for all P E II. A family II is said to be 
relatively compa~f If every sequence of elements of II contains a con- 
vergent subsequence (the limit need not belong to II). We shall say that 
a family of r.e.‘s (x,) is tight if the corresponding distributions are 
tight. Intuitively, if a family of r.e.‘s is tight, this prevents probability 
from “escaping to infinity” as one runs through the family. The main 
result which makes these concepts useful is the following theorem of 
Prohorov [45]; see also [S, $61. 

Theorem 2.1. (a) If II is tight, then it is reZativeZy compact. 
(b) If S is a complete separable metric space and II is relatively com- 

pact, then it is tight. 

Often one has occasion to deal with metric spaces S which are pro- 
duct space. Suppose Si, i = 1, ..*, k, are separable metric spaces with 
corresponding Bore1 sets J io Let S = S, X . . . X Sk be endowed with the 
product topology and Bore1 sets 3 . Since S is separable, 
d= CT1 x a.. X &, the product Bore1 field. For a given p.m. P on &we 
define the marginal measures Pi, i = 1, . . . . k, by 

P’(.A)=P(S,X,..XSi_1XAXSi+lXSk) forAE Ji. 

For a family II of p.m.‘s on S the notion of tightness can be expressed 
in terms of the tighiness of the families Iii, i = 1, *..., k), of marginal 
measures. This result, which is elementary but very useful, was stated 
fork = 2 as [5, Problem 6, p. 411. For a proof see [24]. 

Lemma 2.2. Let II be a family of probability measures on (S, $) and 
let 17’, i = 1 I) . ..) k, be the corresponding families of marginal measures 
on (S!, J i). Then II is tight ij*and only if each n”’ is tight. 

Next we state three extremely useful theorems for obtaining weak 
convergence results in applications. The first has come to be known as 
the “converging together theorem”. For it we assume that Xn and Yn 
are defined on a common domain and take values in a separable metric 
space (S, m). This result can be found in [ 5, Theorem 4.11. 
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Theorem 2.3. I’X,, * X und m(Xn, Yn> * 0, then Yn =3 X. 

Now suppose h is a measurable mapping of S into S”, a second metric 
space with Bore1 sets 3 ‘. Each p.m. P on (S, J ) induces onA (Sp,3’) a 
unique p.m. P/+-l(A) = P(h- 1 A) for A E J ‘. Let D, be the set of dis- 
continuities of h. The next result, known as the continuous-mapping 
theorem, is an analogue of the Mann-Wald theorem for Euclidean spa. 
ces; cf. [ 5, Theorem 5.11. 

Theorem 2.4. If Xn ~XavldPIXEDh]=O,thenhoX,~~hoX. 

In practice we use this result as follows. First we show Xn =) X, often 
by just quoting know% results. Then we find an appropriate mapping iz 
which gives us the r.e.‘s we are really interested in, h Q X,, and finally 
apply Theorem 2.4. 

There is an alternative method for obtaining weak convergence of 
functionals. It is based on a result due to Skorohod [ 521 in the case of 
complete separable metric spaces. Dudley [ 141 removed the require- 
ment for completeness and ‘Wichura [ 671 further removed the separa- 
bility requirement. 

Theorem 2.5. Let (S, m) be Q metric space on which Xn * X0. 77~~ 
there exists a probability space (a *, F *, P*) and random elcme~lts 
X; : W + S such that Px,, = Px;(; and m(X$ X$> + 0 a.e. 

While we will not use this result, the approach is sometimes very use- 
ful and one that should be available to people applying weak-conver- 
gence methodoiogy. Fo:r a very readable account of this method and 
its applications see [ 461. 

Two function spaces have received thi= greatest attention in the 
weak convergence literature: the space of continuous functions on [ 

and the space of functions on [ 0,1] having only jump discontinuities. 
These spaces are the natural ones for the sample paths of most proces- 
ses which arise in applied probability. Sometimes, however, it is more 
natural to have these functions defined on [O, r], r > 0, or even on 
[O, m), particularly when dealing with first-passage problems. 

Let C[O,l ] (= C) denote the space of all continuous, real-va 
functions on [O,l ] with the metric of uniform convergence, 

P(XY Y = w?Cix(t) - y(t)1 : 0 G t < l), 
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and Bore1 sets e . Thus if we think of the elements x, y E C as repre- 
senting the trajectories of two particles moving on the real line R, then 
the trajectories are within a distance E of each other if at each time 
t E [ Q,l ] the displacements are within E. With this metric, C is a com- 
plete separable metric space (c.s.m.s.). For points tl, . . . . tk E [O,l 1, let 

nt 1;. . tk be the mapping that carries x E C into (x(tl, . . . . x(tk)) E Rk. 

The mappings %l . . . tk are clearly continuous. If (P, : yt 2 1) and P are 
p.m.‘s on (C, E! ) corresponding to random functions {X, : n 2 1) and 
X, we say that the finite-dimensional distributions (f.d.d.‘s) of X, con- 
verge weakly to those of X provided & n$._ tk =rs &$, tk for all 
choices of t,, . . . . tk E [ 0,l ] and all k 2 1. Weak convergence of X, to X 
does not follow from the weak convergence of the: f.d.d.‘s; however, 
with the added assumption of relative compactness it does. The specifi- 
catior: of the f.d.d.‘s of a p.m. on (C, p) does determine it uniquely. 
Since (C, p) is a c.s.m.s., relative compactness is equivalent to tightness 
by Theorem 2.1. The key result which provides the principal method 
for proving weak convergence is the following (cf. [ 5, Theorem 8.11): 

Theorem 2.6. Let {X,1 and X be random functions taking values in 
(c”, C? ). Then the foIZowing are necessary and sufficient conditions for 
xn *x: 

(a) the td.d_ ‘s of Xn converge weakly to those of X; 
(b) the family {X,} is tight. 

As mentioned in Section 1, (a) must be shown by classical methods. 
Thus the primary task at this point is to give conditions for the tightness 
of a sequence IX,}. This amounts to converting the Arzela-Ascoli cri- 
terion for compactness of subsets of C to a probabilistic condition. Con- 
venient sufficient conditions for tightness are given in [ 5, Theorems 8.3, 
12.31. 

The theory for C[ 0, j] , j > 0, is exactly like that of C[ 0,l j except 
that we replace 1 by j in the obvious places, For CIO, 00) the situation 
is a little more complicated. Generally, when one has weak convergence 
on C[ 0,l 1, oE;le has it on CIO, +. For further discussion and results con- 
sult [58,65]., 

We turn now to the space D[O, 1 ] = D, the space of all real-valued, 
right-continuous functions on [ 0,l ] having left limits. See [ 5, ch. 31 for 
a complete discussion of this space. This s the space which contains the 
sample paths of most processes of interest in applied probability. In or- 
der to describe the metric for D we let A denote the class of strictly in- 
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creasing, con inuous maps of [ 0,l ] onto itself. For X E A, h(O) = 0 and 
X( 1) = 1. Think of X as being a new time scale. For A E A let 

IlAll =sup log A(r; - ,“‘“’ ) 
s#t - 

and define d(x, y) as follows: 

db, y) = inf(e => 0: llhll G e and p(x, y 0 I\) < E for some AEA). 

The condition ]]Xll < e means, of course, that the slopes of the chords of 
X lie in the interval [ewe, ei]. When e is small, these slopes are essentially 
one. The condition p(x, y 0 X) < E means that after the function y is 
“jiggled” left and/or right according to the time transformation X, the 
ordinates of x and the transformed y are within E of each other. The 
function d is a metric for D which renders Jt a c.s.m.s. This metric, intro- 
duced by Billingsley [ 5 5! 5 141, generates the Skorohod topology which 
relativized to C coincides with the uniform topology. A sequence of ele- 
ments (x,} in D converges to x in the Skorohod topology if and only if 
there exist functions 1n E A such that p(x, 0 &, x) + 0 and p(X, ,e) + 0, 
where e(t) f t. Let the Bore1 sets (the topological Bore1 field) of D be 
denoted by CD . 

Next we would like to produce an analogue of Theorem 2.6. For 

t, 9 l -‘9 tk E [o,l] the projections 7’$, . . ..tk. (D, 9) + (Ek, qk) are 

measurable; however, they are not necessarily continuous. The latter 
fact complicates the analogue of 2.6(a). To this end let X be a random 
function in (D, Q) with distribution P.‘Let 7’x consist of those f E [ 0,l 3 
for which 7rt is continuous a.e. If d(x,, x) + 0, then x, (0) + x(0) and 
x, (1) + x( 1 )#so that ?rO and r1 are continuous everywhere. For 0 < t C I, 

t E T” if and only if 

P[X(t) # X(t-)I = 0, 

since it turns out that 7rt is continuous at x if and only if x is continu- 
ous at t. Since (D, Co) is a c.s.m.s., tightness and relative compactness 
are equivalent as for (C, e)., The analogue of Theorem 2 I 5 is: 

Theorem 2.7. &et {X,} and X be random functions taking values irt 
(D, cb ). Then the following are necessary and sufficient conditions for 
Xh ax: 

( ) a q, .._tk 0 X, * q, __,tko X whenever t,, .., tk c T,; 
(b) the family {X, } is tight. 
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Sufficient conditions for tightness in D can be found in [ 5, Theorems 
15.2-15.4, 15.61. 

We continue our discussion of C and D by stating two small results 
which have proved to be useful in applications. The first is a result of 
Liggett and Rosen, a proof of which can be found in f64, p. 461. 

Lemma 2.8. Let {X,J be a sequence of random functions in (D, d), (Y,) 
a sequence of random func;ions in (C, p), and X a random function in 
(C, p). If d(X,, Yn) * 0, then Xn * X in (D, d) ifand only if Yn * X in 
(C ‘p>. 

For most practical applications this result means that we can work 
in C or D, whichever is more convenient. The second result can be found 
in [ 27, Lemma 3.21. 

Lemma 2.9. Let {X,} be a sequence of random functions in (D, d) and 
X a random function such that P[X E C] = 1. If Xn * X, then Xn is 
C-tight: for all positive E and q, there exists a 6,O < 6 < 1, and an inte- 
ger ni) such that 

fornkzO. 

To conclude our discussion of D, we mention a special application of 
Theorem 2.4 known as the random-time change, which is extremely use- 
ful in practice; see [S, 8 171 for this material. Let D, be the subset of D 
consisting ofelements q which are nondecreasing and satisfy 0 < p(t)< 1 

for t E [O,l 1. Think of q as a time-change transformation of [ 0,l 1. Give 
D, the relative Skorohod topology, and let CD, dienote its Bore1 sets. 

Theorem 2.60. Let {X,> (resp. {Ca,)) be random functions in D Cresp. 
D,) with Xnz and Ip,, defined on the same probability triple. If Xn * X 
and @, =) @, where P[X E C] = 1 and P[@ = tp] = 1, with q E C, then 

Note that no independence assumption needs to be made with respect 
to Xn and Qpn. 

We conclude our discussion of D by mentioning the extensions to 
DEO, j] ,j > 0, and D[O, -). gain D[ 0, j] can be treated e xactly like 

D[O,l I. For D[O, 08) at least two topologies have been suggested; see 
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Stone [!%I and Whitt [66]. Convergence in D[O, =) with Stone’s topol- 
ogy is equivalent to convergence in D[O, r,] for all ~2, where {l;t, n > 1) 
is some sequence of positive numbers with rn + 00 as M -+ 00. Hence, if 
we had weak convergence on D[ 0,l 1, we would also expect to have it 
on D[O, =) with Stone’s Lopology. Whitt’s topology is stronger and 
somewhat more complicatr;J than Stone’s and1 will not be discussed 
here. 

3. Partial sum processes 

In this Fection we shall discuss weak convergence results for process- 
es formed by adding re’s. The limit process for most of these results 
is Brownian motion whose distribution is Wiener measure. 

Wiener measure lV on (C, e ) is a p,m. which satisfies the following 
conditions: 

(a) W[x(O) = 0] == 1, 
(b) W[x(t) < x] = (2~)-~/~ SC__ exp [ -u2/2t] dbn, 
(c) under lV, the process {x(t): 0 < t < 1) has independent increments. 

The p.m. W is known to exist, of course; cf. [ 5, Theorem 9.11 a We can 
extend W to (D, CD) by giving it the value W(A I-) ~31 for A E 9, since 
A~CEE? .Stillth e support of W on (D, Q) is C. We use the symbol 
W for Wiener measure (or the corresponding r.f., called Brownian mo- 
tion) on (C, e) or (D. Q), and count on the context to make the choice 
clear. 

Most of the processes studied in this section are formed as follows. 
Let {&, i 3 1) be a sequence of r.v.‘s defined on (SO, 9, P) with Sk = 
&+ . ..+&.k. l,andSO = 0. Next form the r.f.‘s Xn E C and Yn E D 
as follows: for 0 < t \( 1, 

where o is a finite, positive constant. The r.f. Xn will be piecewise linear 
and Yn piecewise constant, and they will agree at points t of the form 
k/n, k = 0,l , . . . . n. 

3.1. Independent, iden tically distributed rarsdom variables 

The first f.c.1.t. and 1, e prototype for many succeeding res 
to Donsker [ 131. It is the functional analogue of the classical 
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Levy c.1.t. for sums of independent identically distributed (i.i.d.) r.v,‘s. 
Donsker’s result as further refined is the following: 

Theorem 3.1. If the random variables {ti, i 2 I} are independent ana’ 
identically distributed, with mean 0 and variance 02, 0 < o2 < 00, tkn 

(a)X, * Win (C, e ); 
(b) Yn * Win (D,cb ). 
A number of methods are available for proving (a) and (b); see [5., 

5 # 10, ‘161 a Convergence of the f.d.d.‘s can be deduced immediately 
from the c.1.t. The easiest proof of (b) is completed by showing that 

E(lY,WYn(tl)12 Wn~t,)-Yn(t)12~ G 4(t,- f1)2 (x3) 

for tl < t < t2, and lthen applying [S, Theorem 15.61. To show (3.3>1, 
note that by the indfependence of the Xi’s the left-hand side of (3.3) is 

= nw2 ([nt]-[q]) ([nt,l-[ntl)G no2 ([nt21-[ntIl)2. (3.4) 

In [general, we have 

n-l ([nt,] - [nt,]) G t,- t, + n-l, 

which is less than or equal to 2(t2-t,) provided t,-t,> n-l. Thus (3.3) 
is satisfied if t2 -tl 2 n -1. For the other case, t2 -t, < n-1, the left-hand 
side of (3.4) is zero since either [nt] = [ntl] or [nt] = [nt2] or both. 
Thus we have shown that (3.3) holds in all cases, which yields [ 5, (15.21)] 
with F(t) = 2t and ~11 = 1. 

Qnce we have 3.1 (b), 3.1 (a) can be shown easily by applying Lemma 
2.8. 

Note that 

d(Xn, Yn) < p(Xll, Yn) < &I2 max (l[il: 1 < i < n} (3.5) 

Since ti has a finite second moment, it is well known that the right-hand 
side of (3.5) converges weakly to zero. Thus d(Xn, Y,> * 0, and since C 
supports W, Lemma 2.8 yields Theorem 3.1 (a). 

A vector version of Theorem 3.1 is easily obtained by using Lemma 
2.2. In this case le i > 1) be :r sequence of i.i.d. k-dimensional ran- 
dom vectors with finite positive definite covariance ma- 
trix X, and partial sums {Sk, k > 0). Let (Ck, ek) and (@, Qk) be the 
product spaces formed from k copies of (C, e ) and (LI CD ), respectively, 
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with the product topology. The appropriate r.f.‘s in (Ck, e k, and 
(Dk, Qk) are 

x,(t) = n-112 -1/2SIntl f- (nt - [nt]) 17~~‘~ -u2 g[,*] + 1 ) 

Y,(t) = rd2 

where P: -ID is the square root of E-1, i.e., -1 = (Z-l/2)’ :5-l/2. Then 

corresponding to Theorem 3.1 we have 

x* =$ w 9 Y* * w, (3.6) 

where W is the r.f. with values in C” or Dk havi.ng k-dimensi(llnal Wiener 
measure for its distribution. A complete proof of (3.6) can ;‘>e found in 
1241. 

A second generalization of Theorem 3.1 would be to relax the assump- 
tion that E{ff) < 00~ For the ordinary c.l.t., one then enters the area of 
weak converge to stable laws and the corresponding characterizations of 
domains of attraction. Functional analogues of these results are also avail- 
able, where of course the limit processes are the stable processes. Since 
these problems do not generally arise in applied probability, we s 
discuss the results here. The basic reference for this material, however, is 
WI. 

A third generalization of ‘Theorem 3.1 would be to consider triangular 
arrays of r.v.‘s 

it ik,, i = 1) 2, . . . . k, n = 1, 2, . ..} . 

Prohorov [ 45, Theorem 3.11 has shown the counterpart of (3.1) for 
this case under a natural Lindeberg condition. We mention in passing 
that many of the weak-convergence results that follow have triangular 
array analogues that will not be discussed. 

3.2. Stationary, pmixing random variables 

Another generalization of the case of i.i.d. summands is to drop the 
assumption of independence. Independence can be replaced by strict 
stationarity and a type of asymptotic independexe. A complete theory 
ha!l; been developed in 15, ch. 41. Let {fi, i 2 I} be a strictly stationary 

uence defined on (s1, invariant under shift. 
indices i < j, let%{ .F. generated by &, ...9 t’* 

Lea q(n) 4 0 as pz + 00. Then t i> l).issaid tobe 
q-mixing if for each k, n 2 1, 
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We mention two interesting examples of stationary cp-mixing sequen- 
ces. The first is tq-dependent sequences; i.e., ti and ej are independent 
whenever li - jl .> m and the sequence is strictly stationary. The second 
involves a stationary finite-state Markov chain (M.c,), (vi, i 2 1). For a 
real-valued funcfionf on the state space, set ki =f(?Q. Then (ti, i 2 1) 
is stationary (g-mixing with p which convergest to 0 geometrically bz- 
cause of the geometric ergodicity in (qi}. The same claim can be made 
when thle state space is infinite, but (q& is aperiodic, satisfies Doeblin’s 
condition, and has one ergodic class. 

The basic result for stationary, grmixing sequences (es i 2 1) is due 
to Billingsley and can be found in [ 5, $j 201. 

Theorem 3.2. Let {[i, i 2 1) be stationary, q-mixing with ijl having 
meaM 0 arzd finite variance. If Z& p(n)lj2 < 00. then 

(a) the series 0 2 = E{#} + 2 C&r E{[, &+!} converges absolutely; 
(b) if u2 > 0, then Yn * W, where Yn is defined by (3.2). 

3.3. Random sums 

In many problems in applied probability we are confronted1 with the 
following problem On a single probability space (a, y, P) are defined 
a renewal process&t), t > 0) with rate (0 < A < 00) and a setquence of 
r.v.‘s {tip i > 1) which satisfy either the conditions of Theorem 3.1 or 
Theorem 3.2. Next form the random sum process {s,(,), t 3 0) and the 
associated r-f. 

With Yn defined as in (3.2), we have Yn * IV by Theorem 3.1 or Theo- 
rem 3.2. By selecting an appropriate time scale we may assume that 
X < 1 without loss of generality. Let 

e,(t) = n-l N(nt) A 1, a?(t) = ht, OG t< 1. 

Clearly, a, is a r.f. in D, and Q, is a deterministic r.f. in C.‘n Do. Then, 
using the strong law for renewal processes, it is not hard to show that 
~(a~, @) + 0 a.e. as n + 00. Since P[ W E C] = 1, we can apply Theorem 
2.10 to conclude that Yn 0 an 3 W 0 Qp. But the probability that 
@n(t) < 1 for all t E [ 0,l ] converges ‘to one as n + 00, and we have 
Zn* Wa@OrX-1i2Zn * W. This argument can be found in [5, 3 lo]. 
Summarizing we have: 
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Theorem 3.3. Let (N(t), t > 0} be a renewal process with rate X and 
{& i 2 1) a sequence of r. v. ‘s, satisfying the condition of either Theo- 
rem 3.1 or Theorem 3.2, both defined on a common probability space. 
If Yn * W, then A-‘~’ zn 3 W. 

An alternative formulation of the r.f.‘s in Donsker’s theaIrem, random 
partial sums and renewal processes (to be discussed in Section 4) can be 
found in [ 251. 

3.4. Functions of positive recurrent Markov chains 

One important application of Theorem 3.3 is to partial sums of a 
function of a positive recurrent, irreducible, aperiodic discrete time 
Markov chain (M.c.). The basic references for this material are [ % 1 ] and 
[ 201. Suppose {xi, d >,O} is such a M.c. with state space I = (0, 1, . ..) and 
stationary distribution.@: i E 0. Let f be a mapping of I into 
R = (- 00, + w), and form the stochastic process 

yi = f(x,), i > 0. 

Suppose for this discussion that x0 = 0 a.e. Since the M.tz. was assumed 
to be: positive recurrent, it will return to the state 0 infinitely often, and 
the mean return times will be finite. Suppose th.e successive return times 
to state 0 are r0 = 0 < r1 < r2 < . . . . Using the strong Markov property 
enjoyed by this M.c., one can show that the three sequences of I.V.‘S 
(aip i 2 l}, (tip i > 1) and (qi, i > 1) are each i.i.d.; .where 

Ti--1 Ti - 1 

9 =Ti - 7i_1, t 
= 

i c 
j= ?i- 1 

Yj, Vi = z IYj!. 
j=Ti-1 

Let {Z(n): n 2 0) be the discrete renewal process associated with the se- 
quence (ri: i 2 0). Then, if again Sk = & + . . . + &, we are interested in 
the process 

Except for the second term on the right-hand side of (3.7) and the fact 
that E{&) = 0, we would be able to apply Theorem 3.2. These obstacles 
are overcome in the following way. First we get rid of the sum in (3.7). 
Clearly, 
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The right-hand side of (3.8) converges weakly to 0, provi ed E{$ }< =, 
which we shall assume is th.e case. Next let 

~=c f(i)ni, 
El 

which we assume is absolutely convergent. ignoring the sum in (3.7), 
we can write 

WI 
ZJt) - p n112 t = n -I’2 C (ei-/Yai) - /XR-lt2 (nt-Tl(,,))* (3.9) 

i= 1 

From [ 11, Theorem 1.14.51, we know that E{~i} = E(ai} = /J/Q, SO 

si - pai has mean zero. Furthermore, the sequence {& - pai: i 2 1) is 
i.i.d. The second term on the right-hand side of (3.9) can be disposed 
of as in (3.8), if E(af} < 00. Set 

Combining these arguments and applying Theorem 3.3 yields: 

The method used to obtain Theorem 3.4 can obviou.sly be used to 
obtain comparable results for functionals of semi-Markov and cumula- 
tive processes. The ordinary c.1.t. for semi-Markov processes is discussed 
in [ 471 and for cumulative processes in [42]. 

The previous section dealt with processes formed by adding r.e.‘s. As 
one would expect; the limit processes obtained were Brownian motion 
or more general Gaussian processes. Now we turn to processes which 
are formed by counting points: point processes. For these processes not 
only are Gaussian limits permissible but also Poisson processes. 

4.1. RenewaC processes on the line 

Let {u,: n 2 1) be a sequence of nonnegative i.i.d. r.v.‘s with mean 
h-l, 0 < X < 00, and variance 6,O < 02 < 00. Form time partiitP sums 
*yk = u1 -4’ _.. + tik, k .a 1, with s, = 0, and the associared renewal process 
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(N(t), P > 0) defined by 

Our goal now is to obtain a f.c.1.t. for this renewal process. The key to 
obtaining this result is the f.c.1.t. for random sums, Theorem 3.3, and the 
relation 

S Mntl g lZt “?N(nt) + “N(nt)+l’ 

Let 
N@tI 

zI,(t)=(~~n)-’ C (Ui- 
i= 1 

Then (4.1) yields 

Zn(t) (o+Qml (nt - A’1 N(nt)) < z,(t) *’ (adn)-’ bN(nt)+ 1. (4.2) 

Since E(tci) < 00, the term on the extreme right of (4.2) can be hand- 
led as in (3.8). But Zn =+ Ar/2 W from Theorem 3.3, since we assume the 
tli’s were i;i.d. Let 

N,(t) = (a2 h3 n) -U2 [N(nt) - Ant], O<tGl. 

Using the fact that ?V * ---IV and the continuous mapping theorem we 
have: 

Theorem 4.11. Nn * W. 

Notice from (4,2) that Theorem 4.1 will follow whenever Z, * X-1’2 iv, 
the i.i.d. assumption not being necessary. For example, the sequence 
(ui, i 2 1) might be taken to be stationary, cp-mixing and Theorem 3.2 
could be employed. 

Thus we see that weak convergence of the sequence {Up i 2 l}, pro- 
perly normalized, implies weak convergence of the r.f.‘s Nn formed from 
the renewal process {N(t)! t 2 0). We would like: to point out that the 
converse is also true; i.e., if Nn * IV, then Xn =L, W; see [ 28) and [ 621. 
This converse is not very useful the {ui, i 3 1) sequence is i.i. 
since we have Xm * W directly. ver, when the i.i.d. assumpti 
dropped, it is useful, and such s 
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is due to the fact that they are essentially inverses of 
each other. 

4.2. &newal processes in Rk 

We turn now to a f.c.1.t. for renewal processes in k dimensions. Let 
{u,, PI > 1) be a sequence of random vectors in Rk, k 2 2. Set 

so’“’ 0, sk=ul +...+uk fork> 1. 

Suppose/z : Rk + [O,-) is a function with continuous first partial deri- 
vatives, x # C? implies h(x) > 0, and h is homogeneous of degree 1; i.e., 
for all x E Rk and X 2 0, hV(Xx) = Ah(x). Define the associated point-pro- 
cesslM(t): t >, 0) by 

n on {h(&$q) > t, max{h(&) : ld&+l}<-t], 

M(t) = 
+oo 0n n;=, (h(S,)< t). 

Note that in this case M(t) is essentially the index of the fist partial sum 
sjl, say, for which h(S,) > t. The problem here is that there may be many 
values of y2 for which h(S,) G t c h(S,,) since the sequence {h(Sn), 
n 2 1) need not be nondecreasing. We wish to show that a f.c.1.t. holds 
for the point process {M(t), t 2 0). The basic references for the ordinary 
c.!.t. are [4] and [ 181, and for the f.c.1.t. [32]. 

E Rk, p # 0, and define the r.f.‘s Yn in Dk by 

Y (t)=rd2 [S[ ,]-ntp] n n 9 O<t< 1 9 

and Q, in D as 

M,(t) = n -‘I2 [M(nt)- nt/h(p)], 0 < t G 1. 

Kennedy’s [ 321 main result is 

eorem 4.2. If YI * C and P[ & Ck] = 1, then 

Mn * (4.3) 

where Ck is the product of k copies of C, h 
l is the scalar product in 

= (ah/ax,, . . . . ah/ax,), a,gd 
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The main idea of the proof is similar to that of Theorem 4.1, although 
a number of additional technical details must be overcome. Notice that 
when the ZQ’S are i.i.d. with mean and positive definite c:ovariance ma- 
trix, 5 is Brownian motion wit dependent coordinates by (3.6). Since 
6 is symmetric in this case, the minus sign before the limit in (4.3) can 
be omitted. 

4.3. The superposition of point processes 

The Poisson process arises in applied probability with surprising fre- 
quency. This phenomenon lied Palm [44] to consider the limit process 
obtained when one takes the superposition of a large number of inde- 
pendent sparse point processes. He showed that the intervals between 
points in the limit process were exponentially distributed. This sugges- 
ted, of course, that the limit process should be Poisson. Khintchine [35] 
(1955 in Russian) proved a result of thistype. Many others have since 
extended his results. For a comprehensive and up-to-date account of 
this work see [ 121. Here we shall indicate the function-space approach 
to this problem. Our discussion follows that of Cinlar [ 12 ] and Straf 
[59,60]. 

A point process on the line is a stochastipz process (N(t), t > 0) de- 
fined on a probability triple (a, 9 9 P) having almost all sample paths 
nondecreasing, right-continuous, nonnegative, finite, integer valued and 
N(0) = 0. A process with these properties increases by jumps ,mly, and 
the times of these jumps are called the points ofN. An alternative way 
of looking at point processes is as random counting measures. A ~rzdsnz 
counting measure on the line is a stochastic process {N(A), A E %?+I 
taking nonnegative integer values and satisfying N(A w B) = 15r(A ) + N(13) 
a.?. whenever A n B = 0, where V+ denotes the Bore1 sets of R, = [ 0~). 
Think of N(A) as being the number of points in A with multiplicity of 
points permitted and so counted. Then for a point process N identify 
N(t) - N(s) for s < t with the random counting measure N evaluated at 

($9 tl : 

N(t) - N(s) = N((s, t]). 

This dual interpretation will be used repeatedly. 
Let p be a o-finite measure on ( , 92,) having ro atoms. 

dom counting measure Ncl is said to be a Psi 
mean measure p provided N&I,), . ..., NJA, 
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Al , . . . . A, CR + are disjoint and 

[N(A)=k]=exp[-j~(A)]p(A)~/k!, P k=O I 2 9 9 9 l *.9 

whenever p(A) << 00. The ordinary homogeneous oisson process is asso- 
ciated with the Poisson random measure having measure a positive con- 
stant times Lebesgue measure. A nonhomogeneous Poisson process with 
parameter function p(t) is associated with a Poisson random measure 
having mean measure 

p(A) = 1 p(dx), k CR+. 
A 

Suppose now that we are given a triangular array of point processes 

Nil N,k 9 l **t 
1 . . 

where k, is a monotone sequence of positive integers satisfying k,+ 00 
as y2 -j =. We assume that all processes in the same row are defined on a 
common probability space and are mutually independent. The array of 
processes are said to be infinitesimal if 

lim sup P[N,&B) > l] = 0 
n+= lGi6kn 

(4.4) 

for any bounded interval B E %! + . If (4.4) holds for 3 = [O, t], all t > 0, 

this is sufficient. Let Nn be the superposition of processes in the same 
row : 

Nn =Nnl+ a.* $Nnk 3 n> 1. 
n 

Let E c D consist of those elements of D that are nondecreasing, non- 
negative, integer valued, and 0 at t = O;li.e., x E E if it has the properties 
of a sample path of a point process. For t E [ 0,l 1, the r.f.‘s Nn can be 
considered as elements of E. Let Nc( be the distribution of the r8.f. associated 
with a Poisson process having mean measure I,L. Since Ncc has no fixed 
discon tinui ties, TN = [O, 11. The main result is given in the next theorem. 
Convergence of thl f.d.d.‘s is due to Franken [ 194 and Grigelionns [ 23 I, 
and the observation that this implies the full weak convergence in (D, cb) 
is due to Straf [59, @2; 60, p. 2121. 

.3. Suppose the array (Nni) is infinitesimal and p is a finite, 
nonatsmic measure on the Borel sets of [0, rm ] for m 2 1 having a 
bounded density with respect to Lebesgue measure, where (r,,, ) is the 
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sequeme entering in Stone’s topology. Then 

Nn r=$ Nb in D[O, 0~) with Stone’s topoi’ogy (4.5) 

if and only if 
kn 

n+- i=l 
[Nni(B) = 1 ] = /J(B) 

lim C P[Nni(B)> 21 =O 
n+- isI 

(4.6) 

(4.7) 

for any finite in’terval B E %+. 

Proof. The fact that (4.6) and (4.7) are necessary and sufficient for the 
f.d.d.‘s of Nn to converge weakly to those of NM is shown in [ 121 using 
the method of [ 191, and will not be repeated here The condition that 
p be finite with bounded density is nott needed for this argument, but 
only for the tightness whicfr follows. Recall that for weak convergence 
in D[ 0, =) with Stone’s folpology, we need to show it on D[ 8, v,] with 
the SkoroLod topology for a sequence ym + 00. To show (4S), then all 
that remains is to show that weak convergence of :he f.d.d.‘s implies 
tightness of (N,, n > 1). 

To prove that {N,) is tight, we shall show that [ 5, (15.!5), (15,6)] 
hold. We do it only for the case rm = 1, the others being similar. For 
[ 5, (1 KS)] we do note that 

sup INn( =N,(W N(l), 
09t4 

and hence by Prohorov’s Theorem 2.1 the sequence 

{ sup IN,(t)]: n> 1) 
O<t<l 

is tight. For [ 5, (1 S.6)] we use Straf s idea. For k > 1, let Ak C E be the 
set of functio s in D which correspond to point processes having no 
points (jumps) in [ 0, 1 /k] or in ((k- 1 )/k, 1 ] and having no two points 
in the same or adjacent intervals of the form (i/k, 0+1! j/k], j = 0, . . . . k- 1, 
Formally, 

Ak =En{x:x(l/k)=O,x(l)-x(1-l/k)=& 

x((j--Q)/k) - x(//k) f< 1, j = 8, . . . . k - 

Observe that for x E A, the ju 
no less than l/k, and thus one o 
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enters in the definition of wj, (1 /(k+l)) is the one corresponding to the 
jumps. But if ti__l and ti are two such points, wx [ti_l, ti) = 0. Hence, if 
x E Ak, then wk (l/(k+l)) = 0. Thus 

[N, &+I< [wbJl/(k+l)) = 01, 

An equivalent form of [ 5, (15~31 is that for every e > 0, 

610 n-00 
[wjy,(S) > E] = 0. 

So in our present case, (4.9) will hold for Nn if 

hm lim P[N, $Ak].= 0. 
k+oo n+= 

(4.9) 

From the definition (4.8) of A,, we see that 

[n:, $&?tk]< [N,(l/k)> l] +P[N,(l)-N,(l-l/k)> l] 

k-2 

+ c P[N,(0’+2)/kj-- N,Qfk)> 21, 
j=O 

Since we are assuming convergence of the f.d.d.‘s, we have 

lim P[N, $Ak] <PINp(l/k)> l]+PINc((l)-N$l-l/k)>11 
pt-*= 

k-2 

+ c P[NJ(/+2)/k) - Np(j/k) 2 21. 
j=O 

(4.10) 

These terms can be estimated as follovs: 

PINp(l) - Ncc(l-l/k)> l]G p((l-l/k, 1]), 

[Np(O’+k)lk) - NJj/k)=]~ Er2(o’/k, W2)/k]). 

Since p is nonatomic, 

k+= 
[Np(l/k) 2 11 = 0, 

k+= 
[NC,(l) - N#$l-l/k)>l]=O. 

The re.maining term in (4.10) we estimate by 
k-2 
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Next observe that 

lim 
k 

_, o. o <=J& 2 Puilk, 0’+2)lkl) = 0 

since JJ has a bounded density, and that 

since p is finite. Hence letting k + = in (4.10) we have 

lim iim P[N, $A,] = 0, 
k+w n-+w 

which completes the proof of [ 5, (15.6)] for Nn. Thus we have the 
theorem. 

Theorem 4.3 can be generalized to m-dimensional point proczssess 
see [ 121 for convergence of f.d.d.‘s and [ 59,601 for tightness. This en- 
ables one to obtain results about the superposition of compound point 
processes to compound Poisson processes; see [ 12, 5 41. For a different 
treatment of this problem using characteristic functionals, see [ 301. An- 
other approach which begins by considering the weak convergence of 
partial sums of strong mixing sequences to the Poisson process can be 
found in [3 11. Bingham [ 71 has also given a proof that for monotonic 
processes which are stochastically continuous, convergence of f.d.d.‘s 
implies the full weak convergence. 

4.4. The thinning of a point process 

In the previous subsection we saw that superimposing a large number 
of independent uniformly spare point processes led to a Poisson process 
in. the limit. Here we consider a single point process which shall be re- 
peatedly thinned. To thin a point process, we randomly delete its point 
and then expand t” P, time scale appropriately so as to leave its density 
of points essentially clnchanged. 

Let {N(t), t > 0) be a point process and {Y,i, n,i > 1) adoubly in- 
finite array of Bernoulli r.v.‘s both defined on, a common probability 
triple (s2, 9, P). Suppose the Yni’s are mutually independent and als,o 
independent of N. Assrlme that for all n,i > 1 :iiat 

[ Yni = 1 ] ‘z 1 -- 

Now define the new point processes (N,; n > 
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follows: 

No (0 = NW, 

p$l- 
i=l 

0 

on W’__,(t/qJ 2 l), 

otherwise. 

Our goal is to show that the sequence {N,: n 2 1) converges weakly to a 
Poisson process under appropriate conditions on (4n : yt 2 1) and N. 

Theorem 4.4. Suppose that p is u finite, nonatomic measure on the 
Borel sets of [0, rm ] for m 2 1 having a bounded density with respect 
to Lebesgue measure. If for all t 2 0, 

N(ut)/u * p( [ 0, t]) cl&s u + -, 

Kn =?-I 4ij” asn+w, 
i=l 

(4.12) 

(4.13) 

then A/* * NM. 

Proof. See [ 3 11. 

5 Markov processes 

The pr~~~l~~rn of weak convergence of a sequence of Markov processes 
to a lin%ng diffusion process is of great interest in applied probability. 
A considerable literature exists on this problem, particularly for the spc- 
cial case in which the Markov processes are birth-death in discrete or 
continuous time. In our discussion here we shall only state some results 
for the simplest case of such convergence. This case covers, nevertheless, 
many of the models which arise in practice. For more general cases in 
which bounda::y behaviour of the processes are involved, the conditions 
become more extensive and complicated. The results discussed here are 
due to Stone ].%I. 

.Let {XB, n 2 1) be the r.f.‘s with values in D[O, a)) corresponding to a 
sequence of bir$h-alnd-death proc(:sses in continuous time with state 
space En = (a, 00 (“6 0 \( i < =} , where (II?) is increasing in i and lim+, ai 
= Q,. Let X be the r.f. corresponding to a diffusion process with state 
spaceE=[al,a2] c [ -.=, 00 1. The specialization mentioned above is 
that we only consider diffusions for which E = (---00, 00) is a regular inter- 
val and both lzl and a2 are inaccessible. at for any two 
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points x, y e (-~a, OQ ) there is positive probability of going from x to ~9 
in finite time, and that neither nl nora2 can be reached in finite time. 
Furthermore, we assume that the inCnitesima1 generator (i.g.) of the 
diffusion X is of the form 

A 
d2 =3 02(x) - 

d 
+ Mx) G’ 

dx2 - 

--oo<X<=, 

where 02(x) > 0, 02(x) ano m(x) are continuous for -QO < x < =, and 
the domain of A consists of all twice continuously differentiable func- 
tions on (-m, = ). As examples of such diffusions that arise frequently 
in practice, think of X as being Brownian motion (02(x) = 1, m(x)-= 0) 
or the Qrnstein-Uhlenbeck process (02(x) = 2, m(x) = -x). 

Now for the birth-death process Xn let 

en(X)ESUp{~i of) f= E l ,@I < x} - ns i 

for x E [a$), a?)]. Denote by X,l”)and @I the birth-death parameters 
associated with the state (pi. Then set 

whenever 
known as 

. 

m 
n 

(x) z po (Q(n) 
i 

i_ 1 - l&j”)) + xp: (cY${ - cp), 

Q2 (x) = pw (&) 
n I i- 1 

- &q2 + A!“> (ai’p: - cyj”))2, 
I 

x E [c$‘), (Y?)) and e,(x) = ai (n; The function m (x) (a;(x)) is . 

the infinitesimal mean (variance) of the prrrcess;(,. 
Stone’s result can now be stated in the following theorem. 

Theorem 5.1. Let X,(Q) = x, and X(0) = x a.e., with Xn + x. 2Vzen the 
following two conditions are su,,ficient for Xn * X as elements of DEO,w): 

(a) En becomes dense in (-00, F) as n + 00; 
(b) for every compact subin terval I of (--a, = ), 

lim m,(x) = m(x), lim 0: (x) = O2 (3:) 
n-,- n-- 

uniformly for x E I. 

As the limiting diffusion X has continuous paths, condition 5.1 (a) is 
an obvious requirement. Condition 5.1(b) can be viewed as follows 
Each of the processes Xn and X has associated with it a transition func- 
tion which in turn induces a semigroup of operators on an appropriate 
function space. The:se semigroups of operators arG uni.quely de 
by their Lg.%. The fact that the bou da&s al and a2 
are inaccessible me ns that no boun ary conditio 
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the domain of A are required. Since both the Xn and X processes have 
continuous paths, their i.g.‘s are local linear operator-r;. Condition 5.1 (a) 
is essentially a necessary and sufficient condition for the i.g.‘s of the 
X/s to converge to the i.g. of X. Hence the associated semigroups con- 
verge, which implies the convergence of the transition functions. Be- 
cause of the Markov character of the processes, this 
gence of the f.d.d.‘s. Subsequent to the work of Sto 
$41 has shown that if the f.d.d.‘s converge, then the processes are * 

tight, and hence we have the full weak convergence. Liggett’s proof 
also works for birth-and-death processes in higher dimensions. Hence a 
counterpart of 5.1 (a) should be the appropriate condition in this case 

ete this section, we mention some of the other w.ork related 
to this problem. Stone [ 571 has given an a.e. version of the work des- 
cribed above by appealing to local time arguments. Skorohod [ 541 and 
Trotter [Sl 1 discuss this problem from the semigroup point of view. 
Skorohod [ 551 and Gikhman and Skorohod [ 2 1 ] have treated the pro- 
blem from the point of view of stochastic integrals and of the Skorohod 
representation. Borovkov [&lo] has dealt with the convergence of non- 
Markovian processes to diffusions under appropriate conditions on the 
infinitesimal moments. Another important method for problems in this 
area is due to R\ose’n 148,491; also see [5, ch. 43 and [43, ch. 81. 

x tremali processes 

Let X,, X,,... be a sequence of r.v.‘s defined on a probability triple 
, and define the r.v.‘s 

Yi = max{X1, . . . . X,>, Yi = second largest among {X,, . . . . X,}. 

The c.1.t. for YA and the corresponding domains OC attraction are classi- 
cal problems treated by Gnedenko [ 221; when the X!‘s are ii-d., Loynes 
[41] has dealt with the c.1.t. for r), when the Xi’s are a stationary cp-mix- 
ing sequence. In this section we shall discuss f.c.l.t.‘s for (YA, Yz) for 
both the i.i.d. and stationary g-mixing cases, but only give a proof for 
the i.i.d. case. 
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6.1. Independent, identically distributed sequences 

Assume that the sequence X,, X2, .., is i.i.d. with d.f. E Gnedenko 
[ 2 1 ] has determined that for constants a,, > 0 and b, arrd non-degener- 
ate d.f. G, 

(Y 1 -. 
n a~ llbn * G (6.1) 

implies that G must be one of the following three d.f.‘s (except for 
scale and location parameters): 

$(x, = 
i 
0, XG 0, 
exp{-x-*}, x> 0, 

or 

*$) = ( exp{---(-X)CY), x < 0, 
0 9 x > 0, 

A(x) = exp{-eMX}, -=<x<*. 

NOW form the r.f. Mn in D[ 0,l ] by setting 

( 

(Y 1 

M,(t)= (yptl 
- an IIbn t l/n< t< 1, 

I-- an )lbn 9 OG t< I/n, 

where the constants a, and b, are those that appear in (6.1) and give 
rise to a particular G. Our goal is to show that the sequence M, con- 
verges weakly in the space D[a, 11, a > 0, to a limit process M. The M 
process has been called an extremal process by Dwass [ 16; 17 ], and is 
a r.f. on D[a,l ]I characterized by its f.d.d.‘s. For a G tl < .*. < tk < I, 

P[M(t,) < x1, . . . . M(tk) < xk] = G(x,)‘l G(x,)~+~ . . . G(Xk)tk-tk-* 

whenever xl < .x2 < . . . < xk, and is equal to 0 otherwise. Th.e following 
f.c.1.t. is due to Lamperti [ 361. 

Theerem 6.1. If {X,, n 2 1) is a sequence of independent, iden tically dis- 
tributed random variables and (6.1) holds, then in the space D [a, B 1, 
0 < a < 1, with the Skorohod topology, 

M,*M. ( 7 .Y 

roof. In order to show that the f. .d.‘s converge first take t > 

and observe that 

(t)< x] = [P(b,x + a,)]~” 
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since we are assumi.ng that (6.1) holds. Next take a \< tI < t2 \< i and 
x1 < x2. Then by straightforward arguments we can write 

(6.4) 

=P[X1 G bnx2 +a,, I< I< [nt,] I Xl \( bnxl+a,) 1 <I< int,]] 

= PIXl < bnx2 + a,, [nt,] + 1 < [nt,]]. 

Combining (6.3)-(6.5), we have 

P[M,(t,) < x1, Mn(t2) < x2] -+ Ctl(x,) Gt2+ (x,). 

The higher-dimensional distributions can be handled m a similar manner. 
For the proof of tightness of (M,, ~bz 3 l}, see [ 631, wh.ere [ 5, Theorem 
15.31 is used. 

Now define the 19. Nn as follows: 
2 

A$#) = l qzt] - a, Yb, 9 l/n< t< 1, 

w ;- a#, 9 OG t< l/n. 

Lamperti [ 361 has shown that under the assumption (6.1), the f.d.d.‘s 
of (M,, N,) converge to those of (M, N), where 

G’ w, y 3 x, 
UM(t) G x, N(t) \< y] = 

cf@) [ B+t log G(x)/Go/)], )’ < x. 

As usual, to verify tightness one needs only consider the marginal pro- 
cesses. The tightness of M, is shown above, and the same proof works 
also for Nn. Thus we have (Mn, N,) * (M, N). The latter fact was pointed 
out by Welsch [ 631. 

There are two further generalizations of this weak convergence result. 
Not only can we treat the first and second largest r.v.‘s, but also the kth 
largest and various vectorvalued combinations of these. Secondly, the 
assumption that the Xi’s be i.i.d. can be replaced by the weaker assump- 
tion of stationary q-mixing. Both generalization:; in the weak convergen- 
ce setting are due I.IO Welsch [ 631. 
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7. Ftmctionals of limit processes 

The most im ortant feature of weak convergence of randon functions 
is that a great variety of other limit theorems can be obtained almost im- 
mediately by employing the continuous mapping theorem (Theorem 2.4). 
Often in applied probability we first dl?monstrate weak convergence for 
a sequence of random functions for which such results are readily avail- 
able. Then by introducing an appropriate functional on the original se- 
quence of processes we obtain the desired weak convergence for the se- 
quence of real interest. In order for this procedure to have real payoff, 
we must be able to calculate the distribution of these functionals of the 
limit processes. In this section we shall discuss 
limit process is either Brownian motion or the 

this problem when the 
Poisson process. 

7.1. Functionah of Brownian #motion 

We begin by pointing out thle following important fact. Suppose that 
Xn * X as r.f.‘s on (D, ‘b) and that P[X E C] = 1. Assume that 
h : (D, 9) + (SI; 6’) is a measurable map which is continilous on C 
with respect to the uniform topology, where (S’, J’) is a second com- 
plete separable metric space. Then because the uniform and Skorohod 
topologies agree on C and P[X IE C] = 1, the continuous mapping theo- 
rem (Theorem 2.4) tells us that: !z 0 Xn * h 0 X. To complete the job, 
we should be able to specify the distribution of h 0 X. We shall list in 
Table 1 a number of specific instances when this can be done in the 

Table 1 
Functionals of Brownian motion 

B[hoW Q y] References 

x(t) 
Ix(t)l 
x(t2) - x(t1), 0 d t1 a; t2 < 1 
sup {x(s): 0 < s Q t) 
inf {x(s): 0 G s 4 t} 

x(t) - inf {x(s): 0 Q s Q t} 
inf (t > 0:x(t)=&, a > 0 
t-l m {s: 0 Q s CQ t, x(s) > 0) 
(m = Lebesgue measure) 
t-’ sup (s E [O, t) : x(t) = o} 

sup {k(s)l: 0 G s r; t} 

w(o, f) g yl, 
2P[N(O, t) G yJ -1, 
W(O, t2-tl) Q Y I, 
2P[N(O, t> G y] -1, 
2P[N(O, t:1 G y], 
ww, 0 G yl -1, 

2WW0, u) > al 9 
C21n) arc sin Jy, 

y E R1 
Y>O 
y E RI 
Y>O 
YGO 
Y>O 
Y>O 

CKy91 

o<ya 
1)y <AqO,t) G (2k+l)ly] 

IS, P* 611 
[5, P- 611 
[5, p. 611 
15, p. 721 
1% pa 721 
[29, p. 411 
I29, p* 251 
[2 



238 D.L. Iglehrt, weak convergence in applied probability 

case where X = W, Brownian motion. The symbol N(0, t) stands for a 
normal T.v. with mean 0 and variance t. The function x(t) -- inf(x($: 
0 < s < t) makes the origin an impenetrable barrier and is of fundamen- 
tal importance in queueing theory. 

7.2. Functionals of the Poisson process 

Let Np be a Poisson random measure or p.rocess with a-finite mean 
measure p having no atoms. We have seen in Section 4 that the Poisson 
process can arise as the limit process in a number of ways. To capitalize 
on weak convergence results we would like to be able to apply the con- 
tinuous mapping theory as was done for Brownian motion. 

The most interesting functional to consider is the mapping 
hi: LIlO,=) + (R”, %?*) whose kfh coordinate is 

( + == 3 {t: x(t) = k} = g, 

hk(x) = 
inf’(t: x(t) = k), otherwise, 

where k 2 1. The mapping h is measurable, but not continuous with res- 
pect to the Skorohod topology ori D. However, h is continuous on E; 
see Section 4 for definition. Since the distribution of Nc( concentrates 
on E, the continuous mapping theorem can be applied. Next we can look 
at h, (x) -hkJx)and obtain weak convergence for the interarrival time 
between the (k- l)st and kfh arrivals. 

8. Concluding remarks 

We hop’e that this survey has given the reader a taste of the type of 
weak convergence results available. In some sense weak convergence 
theory is a way of life: whenever a c.1.t. is discovered, the first impulse 
is to extend it to a f.1.c.t. This extension is often pleasing from a purely 
esthetic point of view; however, it is also frequently very practical from 
an applied point of view. 

There are three areas of work that have not yet been mentioned which 
we feel will be important for future work in applied probability. The 
Crst deals with a theory for processes with a multiple time parameter; 
cf. [ 3, 59, GO]. This work will have applications to models involving ran- 
dom measures in t has already seen application to empirical d.f.‘s 
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for random vectors. The second area is the weak convergence of stochas- 
tic processes conditioned on a particular event. Most of this work has 
been carried out by Liggett [37-401. For other examples of condition- 
ed f.c.l.t’s, see [ 1, 2, 261. It seems very likely that this work will find 
applications in epidemic theory and other models which are essentially 
“one-shot affairs”. The last area is that of rates of convergence for f.c.l.t.‘s. 
This problem is, of course, a natural one to be addressed for any type of 
limit theorem. There are numerous results available among which we 
mention [50,51,33,34, 151. 
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