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Chapter 8 

Digital Signal Processing 

8.1 Fundamental Concepts 

While the processing of signals has been done (and continues to be done) with 
the use of analog devices, the somewhat newer area of digital processing offers 
the advantage of being able to process many times, and in many different ways, 
a given signal. This has obvious merit in image processing, where one would like 
to look at the result and be able to change it according to the effect desired. 

8.2 Sampling: Nyquis t Theorem 

The first problem in treating the data is that, while the original signal was essen-
tially continuous, the digital signal must be put on a discrete time mesh. Clearly 
some information is lost in this procedure and we must be able to quantify and 
understand the errors involved. The signal is digitized by a sampling procedure 
where the size of the signal is measured at a number of time points spaced by 
5. We shall suppose that this part of the process has been carried out (normally 
by a special electronic processor) and that the discrete data exist at a series of 
points 

-N5, -(N-1)S, ..., 6, 0, S, . . . , (N-l)5, N5. 

If the original signal is represented by /(£), the sampled function is 

f{nd), -N<n<N. 

Since we cannot use the usual (continuous) Fourier transform to obtain the 
spectral representation of the function (because we don't have the points at all 
values of the time) we shall make use of the discrete Fourier transform given by 

N 

Fa(u) = 5 £ f(n8)einS». (8.1) 
n=-N 

We may now ask how well this discrete spectral distribution calculated from 
the sampled data resembles the true spectral distribution of the signal. To this 
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182 Digital Signal Processing 

end we can replace the sampled data with the transform of its true spectral 
representation 

1 r°° 

Using this expression in Eq. 8.1 we have 
A N r°° 

Fs(") = 7T Y, / duj'F{J)e-^'n6eiunS (8.3) 

5 f°° 
= — / du'F(u')g(u - w') (8.4) 

where 
N 

g(u-u/)= £ ] c<(—«'W. (8.5) 
n=-AT 

The function, p(w — u/), is periodic and has the same value for 

UJ5 = J5 + 27rm; m = 0, 1, - 1 , 2, - 2 , . . . 

Defining ws = ^f- we see that 

j ( u - u ' + m w s ) = 5 ( u - u ' ) ; m — 0, —1, 1, —2, 2 , . . . (8.6) 

so that we can break the integral into segments, 

Fs{u) = — Y / dw'F(w'- mwa)s(w - u/). (8.7) 
m~ — oo 2 

If we look at the sum 
N N 

g(x)= J2 eixnS = 1+2^2cos(nxS) (8.8) 
n= — N n=\ 

we see that it is strongly peaked at x=0 (see Figure 8.1). Thus, to a good ap-
proximation, we can remove F{u>' — muis) from under the integral sign evaluated 
at w' = UJ. The validity of this approximation depends on the extent of the 
original data set. Using the exact result 

/
djj'g{Lj — u / ) = 0JS 

we find 
oo 

F3(u)= ^2 * V - m w . ) . (8.9) 
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Fig. 8.1 Graph of the sum in Eq. 8.8 for N=20 (dash-dot curve), N=100 (dashed curve) and 
N=500 (solid curve). 

Considering values of u> around zero, there is some frequency at which the 
spectra from m = 0 will begin to overlap with those from m = ±1 (see Figure 
8.2). If UJC is the value where F(ui) can be cut off (i.e. values greater than OJC are 
negligible in the spectral distribution), then to avoid the problem of overlapping 
spectra we must have 

> 2wc (8.10) 

If the sampling frequency is too low then overlap of the two regions will occur and 
the low and high frequencies will become confused, a condition known as aliasing. 
We assume that we take the maximum range possible i.e. that u>3 — 2u>c. Given 
that our spectral distribution is valid within one half of the sampling frequency 
we may ask how to reconstruct the original signal. 

Using the inverse Fourier transform on Fs (ui) we find 

fit) = +- [^ Fs{w)e~iut = ^- E /<«*) r ei(nS~t)U(hj (8'n) 
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n=-N v ; n=-N v ' c 

where we have assumed that 5 = ^- = —. 
If the function is evaluated at one of the input values, say t = mS then we 

have 

= £ a i n ( n - m ) * K 
• ^ — ' (T7. — 7T>.I|V,J_ 

so if 

a=-N ^ ~ m ) < 5 W c 

/. , ,. . N sinln — m)5u>c , . 
if n = m (in the limit) — ^ -+—- -» 1 (8.14) 

(n — m)bu)c 

sin(n — m)5ujc sinln — mW 
if n ^ m —-i r-f—- = —r± - ^ > 0 (8.15) 

(n — Tn)oajc (n — m)-K 

Hence, at a sampled point this expression gives the exact representation since 
all contributions vanish except for the term corresponding to the appropriate 
value. 

8.3 T h e Fas t Four i e r T r a n s f o r m 

Suppose that we have a time series that we wish to transform to frequency space, 

F ( w ) = / f(t)eiutdt. (8.16) 
Jo 

We assume that the function f(t) has been digitized as 

/o) A ) h , •••, / J V - I 

with a time spacing of 5. 

t = jS; j = 0, 1, 2, . . . , N - 1 

We will find it very efficient if the function F(UJ) is also calculated on a mesh 
with a spacing e 

u = re; r = 0, 1, 2, . . . , N - 1 

such that 

eS = 2TT/N 
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Fig. 8.2 Spectrum of a Gaussian pulse in time taken from a sample with spacing 0.2 (a) and 
0.4 (b) using Eq. 8.1 

and the integral can be expressed in terms of the nodal values (aside from the 
overall factor 8) as 

N-l N-l 

j = 0 j = 0 

where 

q — e N . 

Note that for r > N — 1 q (and hence F) repeats. In particular, 

0^ = 1 and o"5" = —1. 

(8.17) 

(8.18) 

(8.19) 

We will assume that N is a power of 2 and hence n = ^ is an integer. In the 
sum 8.17 the product rj will often be larger than N (and n) and so we anticipate 
that there will be an efficient method of calculating these sums. To see how this 
might come about, consider the explicit representation of the sums for the case 
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of N = 8. In this case q8 = 1 and q4 = —1. 

F0 = f0+fi +f2 +h +h +h +/e +h 
Fi=fo+fiq +f2q2 +f3q3 +/4g4 +hq5 +feq6 +/?g7 

F2 = fo+fiq2+hq4 +fsq6 +Uq8 +f5qw+f6q12+frqU 

F3 = /o +hq3 + / 2 ? 6 +hq9 +/4?12 +hq15 +hq18 +frq21 

Fi = /„ +/iQ4 +/2g8 +/3g1 2 +/4916 +/5920 +/e?2 4 +frq28 

F5 = /o +/ig5 +hqW +/3915 +/4«20 +/s92 5 +/6g3 0 +/7g3 5 

F6 = /o +/ig6 +/2912 +/3g1 8 +/4924 +/5g3 0 +/6g3 6 +/7g42 

F7 = /o + / l 9
7 +/2514 +/3g2 1 +/4g28 +/593 5 +/e«42 + M 4 9 

We see that there are a large number of powers of q greater than N and n 
and we could simply reduce all powers of q to 0, 1,2 and 3 by the use of Eq. 
8.19. Rather than replace them directly, we shall make a reduction in such a 
manner that it can be applied generally for any power of 2. For the first four 
equations we will simply regroup the terms. 

F0 = (/o + h + h + /e) +( / i + / 3 + h + h) 
Fi = (/o + hq2 + /4<Z4 + /eg6) +q(h + hq2 + /s<74 + /7g6) 
F2 = (/o + /294 + /498 + /6912) +<72(/i + hq4 + hq8 + hq12) 
Fz = (/o + f2q" + hq12 + /eg18) +q3(fi + hq6 + hq12 + frq18) 

while for the second (r > n) we use Eqs. 8.19 to write 

F4 = (/o + h + h + h) - ( / i + h + h + fr) 
F5 = (/„ + hq2 + h<f + /eg6) -g ( / i + /3g2 + /5g4 + /7g6) 
^e = (/o + /2g4 + Ag8 + /eg12) -g2(/i + /3g4 + hq8 + /rg12) 
F7 = (/o + /2g6 + /4g12 + /6g18) -g 3 ( / i + /3g6 + /5g12 + /7g1 8). 

2m , / -Am I / „6m Xm = f0 + f2q'm + f4q4m + f6q 

p2rn j f „ 4 m _J_ X _,6m Ym = h + hq2m + f5qim + f7q 

If we define 

and 

then 

F0 = X0 + Y0; 

Fl=X1+qY1; 

F2 = X2 + q2Y2; 

F3=X3 + q3Y3; 

Fi = X0~ Y0 

F5 = X1~ qYx 

F6 = X2~ q2Y2 

F7 = X3- q3Y3. (8.20) 
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Thus, the computation has been cut approximately in half since the calcula-
tions of Xm and Ym need be done only once. This method of reduction allows a 
great deal more gain however. We notice that the polynomial form of X and Y 
is the same as the original sum except that it is one half the length and it is a 
function of q2 instead of q. If we set: 

t = q2 and f2j = dj (8.21) 

(note that t4 = q8 = 1 and t2 = q4 = — 1) we have 

Xo = do +di +d2 +d3 

X-L = do +dit +d2t2 +d3t3 

X2 = d0 +dit2 +d2t4 +d3t6 { ' 
X3 = d0 +dit3 +d2t6 +d3t9 

or 
X0 = {d0 + d2) +(d i + d3) 
Xx = (d0 - d2) +t{dx - d3) 
X2 = (do + d2) -(di+d3) 
X3 = (d0 - d2) -t(di - d3). 

(8.23) 

The Ym will be calculated in the same way with an offset in the definition of dj. 
To carry out the general case we write 

2 n - l 

Fr=J2 fil^ (8-24) 
j=0 

For r < n — 1, 

Fr= E W + "£ fit* = £ fjQrJ + qT £ fj+lQrJ 

j even j odd j even j even 

= Xr + qrYr. 

For r > n we can again write 

Fr = Yl W + E W 
j even j odd 

but, putting r = n-\-m, 

Fn+m= Y /j9"V"J'+ £ /^"V*''= E fiVmj-qm E W 
j even j odd j even j even 

— Y — nmV 

mj 
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The basic procedure at each stage is to take two inputs Xm and qmYm 
and add and subtract them to produce two outputs Fm and Fn+m. Then those 
outputs become input to the next stage. This procedure is called the "butterfly" 
(see Figure 8.3). 

Fig. 8.3 The butterfly. 

Thus, we can start at some power of 2 for N and keep reducing the problem 
until we arrive at the system of four elements. The calculation of the four 
elements might be programmed as follows. 

subroutine f o u r ( t , x , k , i ) 
c t i s the value of the basic exponential 
c f i s the i n i t i a l sampled time se r ies 
c x i s the vector of answers 
c k i s the current s t r i de in the array f 
c i i s the s t a r t i ng point in the array f 

common / t ime/ f 
complex t , f (0 :10000) ,x (0 :3 ) , s l , s2 , s3 , s 4 
sl=f(i)+f(i+2*k) 
s2=f(i+k)+f(i+3*k) 
s3=f(i)-f(i+2*k) 
s4=f(i+k)-f(i+3*k) 
x(0)=sl+s2 
x(l)=s3+t*s4 
x(2)=sl-s2 
x(3)=s3-t*s4 
re turn 
end 

Calling this program with i=0 and k=2 will calculate X in the example 
above and a call with i = l and k=2 returns Y. To calculate a spectrum on eight 
frequency points from eight time points we could use the routine "eight" with 
i=0 and k=l. 
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subroutine eight(q,g,k,i) 
common /time/f 
complex q,g(0:7),x(0:3),y(0:3),t,f(0:10000) 
call four(q**2,x,2*k,i) 
call four(q**2,y,2*k,i+k) 
t=l. 
do j=0,3 
g(j)=x(j)+t*y(j) 
g(j+4)=x(j)-t*y(j) 
t=t*q 
enddo 
return 
end 

Subroutines for increasing the power of two are nearly the same. 

subroutine s ix teen(q ,g ,k , i ) 
common /time/f 
complex q ,g(0:15) ,x(0:7) ,y(0:7) , t , f (0:10000) 
ca l l eight(q**2,x,2*k,i) 
c a l l eight(q**2,y,2*k,i+k) 
t = l . 
do j=0,7 
g(j)=x(j)+t*y(j) 
g(j+8)=x(j)- t*y(j) 
t=t*q 
enddo 
re turn 
end 

The highest level routine is always called with i = 0 and k = 1. One can 
continue to write such subroutines as large as the size desired. 

8.4 Phase Problems 

The reader will have noticed that in Section 8.2 we considered a symmetric 
placement of the points about (and including) zero which led to an odd number 
of points. The fast Fourier transform requires that the number of points be a 
power of two and hence even. If we want to make the transform symmetric 
and contain an even number of points then the origin will not be on the mesh. 
We can easily construct a mesh which satisfies these conditions on half integral 
values of the spacing, 

t(J) = (J + \)S; i = - y t o y - l (8-25) 

but this process introduces an unwanted phase into the resultant spectrum. If 
one only wants the absolute value of the Fourier transform there is no problem, 
but if the full spectrum is needed, a correction will need to be applied. A 
particular case is the calculation of the Fourier transform of a symmetric real 
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6 8 

Fig. 8.4 Spectral transform for the conditions of the problem. 

function. In this instance the transform itself should also be real but will not be 
without this correction (see the problem at the end of this chapter). 

We want to calculate 

«. _ i 

FH= J2 eMi+>)'/[d+J)*] (8.26) 
J = " T 

or, in terms of u> = re, 

Fr=Y, Jr<i+i)Sf\(\ + M (8.27) 

Using the relation between e and 5 

Fr=22 eir%ii+j)f[(l+j)6] (8.28) 
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Changing the j index to k = j + y we have 

Fr = £ J^-^fK1- - ~ + k)5] (8.29) 
fc=0 

Now, labeling the time sequence starting from the first value with index zero 

Fr = e-*"-1^1 £ eir**/* (8.30) 
k=Q 

Since the FFT calculates the sum, the transform we want can be obtained 
by including the premultiplying factor. 
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Prob lem 

(1) Continue the construction of the F F T subroutines up to 128. Sample the 
function 

f(t) = e - 4 ' 2 + . lcos5t 

in steps of (5=0.4 for points symmetric about t = 0 (i.e. at ± | , ±4 r , etc. 
Use the F F T routines to calculate the spectral distribution. 

Note that the initial function is real and symmetric so that we expect to 
obtain a real spectrum with a distribution of frequencies for the transform 
of the Gaussian function and sharp peaks at ± 5 for the cosine. To assure 
that the spectrum is real it is necessary to apply the correction discussed 
Section 8.4. Your result should look like Figure 8.4. 
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